Evidence Management in
Programatica
(Presentation for SoftCeMent '05)

Mark P Jones
Portland State University
November 2005

(joint work with the Programatica Project at PSU and OGI/OHSU)

BEEREEHELE

Programatica Positions:

= “Programming as if Properties Matter” to support
the construction and certification of high-assurance
systems

= There is a Broad Spectrum of (Useful) Assurance
Techniques: code review, testing, formal methods, ...

= Everything Changes: flexible and efficient tools are
needed to deal with constantly evolving requirements,
code, evidence, and assurance goals

= Make it Real: assuring security properties of a real-
world microkernel implementation

Programming as if Properties Matter:

% Programatica Haskell Browser: HW

| File [& | view [[Windows [E] | Cert [H | OD

Module Graph File: [Hil, 1hs |

‘IFHEI—@ <ho| ok | Module: |HN
Bungalow .Ihs Inztead of exporting an operation that =swi SOu rce COde
Decoder.lhs e provide only the following “ha{preser

executes a command shaick and then re

OM preseryvetode 3 Hl ma > Hil m a
prezervetode ¢ = do md <- getMode
¥ - o
MonadT.Ihs sethiode nd
return x

A program that is already running in kernel mode can uze a command
PhysMem.lhs of the form “heipreservebode (userMode 3 o)t to execute “heich
StateMonad.lf in uzer mode and then switch back to kernel mode, However,
fthere iz no way for a program that is running in uzer mode to
witch to kernel mode using any combination of “hs{user
virtkdem.lhs and shelpreservetode},

% Mested uses of “he{preserveModel behave the same

Properties

T

| azzert
I = {preservebode , preservetodel === preservedode

| azzert
I =fAll e, f, {preservetode (c »k= £11

C P L P 13

FrezerveModeldempotent: HIl,Preservetodeldempotent.. Assertion
Certificates: none, Create a new certificatel
Forall {lat:*=»*) b} , Prelude,Prop

Building High-assurance Software:

There are many ways to increase assurance:
- Test programs on specific cases

- Test programs on randomly generated test cases
derived from expected properties

- Peer review

- Use algorithms from published papers

- Reason about meta-properties (e.g., using types)
- Use theorem provers to validate (translated) code

Each can contribute significantly to increased
reliability, security, and trustworthiness

Evidence;

= Diverse techniques, varying in:
- Applicability
- Assurance
- Technical details

= But there is a common feature:

- Each one results in some tangible form of
evidence that provides a basis for trust

Examples of Evidence:

There are many kinds of evidence:
- An (input, expected output) pair for a test case

- A property statement, and heuristics for guiding the
selection of “interesting” random test cases

- A record of a code review meeting
- A citation/URL for a published paper or result
- A type and the associated derived property

- A translation of the source program into a suitable
theory and a user-specified proof tactic

Each different kind of evidence is stored with the
program as a certificate

Extreme Programming:

Tests

Implementation

N2 U
A A
N2 U
A A
?7?7
N2 U
A A

» Testing and Programming, hand in hand

» Testing reveals errors in the program
" Programming reveals errors in the test cases

"Extreme Formal Methods":

N l\ l\ N
Specification > > >

% l/ l/ %

N l\ l\ N
Implementation > > >

% l/ l/ %

* Programming and Validation, hand in hand
= Validation reveals errors in the program
" Programming reveals errors in the specification

The Programatica Vision:

> User supplied,

Type <=] , ‘ . e
checking octiram-lev 1t domain-specific
S (| - toolsets...
- A
Execute / & Fir'p I’ty Certlfﬁcatdl wteractlve Proof
& test ; Editor
nv1ronment
- \ Theorem
Randorm Provin
tdst generator 9
="
—a ¥
Code review Model
Checking
Instrumenting Automatic Decision
compiler Procedures
\
‘ Reporting,
Analysis,

Ma nagement assure-o-meter

Programatica Servers:

"I say so”
- A person signs their name by an assertion

Testcases £
Individual test cases / regression testing

QuickCheck %

Random testing

Plover 2
- The P-logic verifier
Alfa b

Isabelle ,
Logical framework, tactic-based theorem prover

g

implemented,
automated,
maturing

hand / auto
translation

Evidence and Certificates:

The certificate abstraction is designed to
support:

i Calaturing evidence (in many different forms) and
Collating it with source materials

= Combining evidence from different sources

= Tracking dependencies and detecting when
evidence must be revalidated as a result of changes

= Managing evidence by analyzing and reporting on
what has been established, identifying weaknesses,
guiding further effort, etc...

Capture and Collate:

source

dependency
info

cert,) (cert, o cert,

H_J

descriptor| Other files or folders

that are needed by

this certificate.

Compound documents allow source materials
to be packaged with related evidence and
dependency information.

Combining Evidence:

Programatica allows us to combine evidence from
different sources:

Goals:
Evidence Integration
Modular Certification

Mechanism:
Each certificate carries a sequent:
Hypotheses I~ Conclusions

Servers for external tools are responsible for testing
validity (i.e., checking that a certificate’s sequent is
consistent with its evidence)

Certificate Interactions:

N.B. Different kinds of
certificate

A B+ C A-B

Certificate Interactions:

Programatica-level
inference

A measure of
assurance ...

Programatica-level
certificate

Certificate Interactions:

A, B-C A-B

u-ra

A-C
- C
I

q

Certificate Interactions:

Untrustworthy source?

A, B-C A-B

u-ra

A-C
- C
I

q

Certificate Interactions:

“what if ?”
- C

— \ Explore Alternatives!

A, B-C A-B

+!TE

A-C
- C
I

“then ..”

q

Dealing with Change:

= Changes happen all the time in software development!
- functionality, requirements, bug fixes, assurance

= We must handle change as efficiently as possible

= Changes to source code require recompilation
- A fully automated process using "make” tools

= Changes to source code require recertification
- Some evidence cannot be reconstructed automatically

Recertification after Change:

" "make”-like functionality for certification

- Track dependencies to determine when evidence is
invalidated by changes to source code

= Minimize the need for recertification:
- Fine-grained dependency tracking

- Robust dependency tracking

= Ignore insignificant changes: reformatting; reordering;
changes to comments; changes to local variable names;
changes in unrelated sections of code; ...

- Lazy recertification
* Track validity but do not require immediate recertification

Using a Dependency Graph:

f

Properties

Using a Dependency Graph:

Properties

Using a Dependency Graph:

Potential chan‘ge>

f

Properties

Hashing to Detect Change:

= When we parse a source file, we calculate a
cryptographically robust hash (e.g., MD5) over the
abstract syntax of each definition

= These hashes are cached as hidden information:
0ccl75b9c0£f1b6a831c399%9e269772661
92ebbffeebae2fec3ad71c777531578f
81a5fe3d544359af13848e6192eced’75
445a4caz24el10824e03efd2e2e1d755d9
987dd8£5£1293857dc7932c14c7£3d80
bb53046df3ef7793ee7c37aec0d090d0
ad797e6£29cf558f7aeb8200563ecd3a

= If we find a definition whose hash is not listed, then it
must be new/modified.

= By hashing over abstract syntax, we do not flag any
changes if the source text Is reformatted, if comments
are changed, etc...

Management Tools:

Certificate management tools let
users ask (and answer) questions
like the following:

- What properties have I verified
(or not)?

- What tools did I use?

- Is the evidence up to date &
consistent with the code?

. N
- What conclusions can we draw
from the evidence in hand?

- What other verification
strategies should I pursue?

e Progr. =10l x|
ile Certific
Type Sequent Walid | Conf Score:
Al-EI M | 100 75 AI-B Bl-C
El|-c W | o0 o7|
resalve] 5 | c|_[)
resthvel 1. ¢ w100 72|
CID | 100 esl s ol | = p e
: “A
resshel | W | o100 1| \/
Eﬁ DIE M| o0 sof Fl-A resahve] 5 | g
resolue] |, | £ W | 100 30| \/
;
Fl-A wootooo ol [FI-E |EI-G
FI-E W 10 7
EI-G | 100 sol fesoel (|
o 3
i Fl-o B 100l 4

Scoring & prioritization
> mechanisms required

- Where am I most vulnerable?

- What should I do next?

Future Challenges:

= Making the assure-o-meter real

= Dealing with non-functional properties
* Encoding certification policy

= Certifying the certification tools ...

* Developer Carrot and Stick

